Институт Медицинской Климатологии
Микроскопические методы — световая микроскопия.

Для того чтобы можно было рассмотреть мелкий объект, необходимо его увеличить. Увеличение достигается с помощью системы линз, расположенных между глазом исследователя и объектом. Огромное значение для микроскопических наблюдений имеют контрастность и разрешение, позволяющие четко отличать объект от фона и раздельно видеть очень близкие детали изображения. В зависимости от принципа создания изображения микроскопия делится на световую, электронную и лазерную.

Современные световые микроскопы являются сложными и имеют три системы линз. Система конденсора отвечает за правильное освещение поля зрения и расположена между источником света и объектом. При внешнем источнике света лучи направляются в конденсор зеркалом. Многие современные микроскопы имеют встроенный источник света, и зеркало у них отсутствует. Увеличивают изображение системы линз объектива, обращенного к объекту, и окуляра, соприкасающегося с глазом исследователя. Общее увеличение определяется как произведение увеличения объектива на увеличение окуляра. Разрешающая способность микроскопа зависит от длины волны используемого света, оптических свойств линз и показателя преломления среды, контактирующей с наружной линзой объектива.

Самым простым приемом, повышающим разрешающую способность микроскопа, является применение иммерсии. Между наружной линзой объектива и объектом помещают каплю жидкости, показатель преломления которой превышает показатель преломления воздуха. Для каждой жидкости используют специальный иммерсионный объектив. Наиболее распространены водные (с белым кольцом) и масляные (с черным кольцом) объективы. Модификациями обычной светопольной микроскопии являются ультрафиолетовая, темнопольная, фазово-контрастная микроскопия.

Применение более коротковолновых ультрафиолетовых лучей также позволяет повысить разрешающую способность микроскопа. Однако использование специальных источников света и кварцевой оптики приводят к существенному удорожанию микроскопических исследований.

В темнопольной микроскопии объект освещается только косыми боковыми лучами с помощью специального темнопольного конденсора. При таком освещении поле зрения остается темным, а мелкие частицы светятся отраженным светом. Темнопольная микроскопия позволяет различить контуры объектов, лежащих за пределами видимости обычного микроскопа, например, прокариотических жгутиков. Однако при таком способе наблюдения нельзя рассмотреть внутреннее строение объекта.

При применении фазово-контрастного устройства можно наблюдать живые прозрачные объекты, которые практически не отличаются по плотности от окружающего фона. Цвет и яркость проходящих через такие объекты лучей почти не меняются, но происходит фазовое смещение, не регистрируемое человеческим глазом. Фазово-контрастное устройство, применяемое как приставка к обычному микроскопу, преобразует фазовые различия световых волн в изменения их цвета и яркости. Прозрачные объекты становятся более четкими, и в клетках крупных микроорганизмов можно наблюдать даже отдельные структуры и включения.

Добавить комментарий